TABLE OF CONTENTS (Continued)

								F	Page
	Controlled-Relief Die								89
	Double-Reduction Die - Extrusion Ratio 4:1.								89
	The Potential of Die Design								93
	SECTION II								
XIV.	SUMMARY OF SECTION II								97
XV.	HYDROSTATIC EXTRUSION OF TUBING					,	×	,	98
	Tooling								0.8
	Effect of Floating-Mandrel Arrangement.								
	7075-O Aluminum Tubing								
	Extrusion Ratio								
	Lubrication								
	Effect of Stem Speed								
	Extrusion Ratio								
	Lubrication								
	Effect of Mandrel Taper								
	Re-Extrusion of As-Extruded Tubing								
	Ti-6Al-4V Titanium Alloy Tubing								106
	Extrusion Ratio								107
	Effect of Mandrel Taper			٠,					107
	Lubrication								107
	Stem Speed								109
	Re-Extrusion of As-Extruded Tube								
XVI.	HYDROSTATIC EXTRUSION OF SHAPES					*			110
	Die Design for the Extrusion of Shapes								110
	Die Design for the Extrusion of Shapes From		•	•	•		•	•	110
	Round Billets								110
	Die Design for Re-extrusion of T-Sections .	•			•	•	•		
	Experimental Procedure								
	Cold Hydrostatic Extrusion and Re-extrusion of 7075					•	•		113
	Aluminum Shapes								113
	Extrusion Pressure Requirements	•	•	•			•	•	113
	Die Design								
	Stem Speed and Billet Surface Finish								
	Billet Lubrication								
	Extrusion of Re-entrant Channel Section				•	٠			115
	Re-extrusion of 7075-0 Al T-Sections								115
	AISI 4340 Steel T-Sections								
	Re-extrusion of Ti-6Al-4V Alloy T-Sections								
	Re-extrusion of Cb-752 Columbium Alloy T-Section								118

TABLE OF CONTENTS (Continued)

		Page
XVII		120
	The HYDRAW Process	120
	HYDRAW Tooling	120
	Draw Control and Draw Load Measurement	120
	Wire Coil Configurations	122
	Experimental HYDRAW Procedure	122
	Preparation of the Point on Wire and Shape	122
	Operational Sequence	
	HYDRAW of Ti-6Al-4V Titanium Alloy Wire	124
	HYDRAW of Beryllium Wire	126
	The Starting Wire	128
	Experimental Developments	128
	HYDRAW of Beryllium Wire of Ingot Origin	130
	HYDRAW of Beryllium Wire of Powder Metallurgy Origin · ·	131
	Tensile Data on Beryllium Wire	131
	HYDRAW of TZM Molybdenum Alloy Wire	132
	HYDRAW of 7075-0 Aluminum T-Sections	132
	TITELLIN OF 1013 O'THURSTONE TO SECURIT	132
XVIII	I. TANDEM EXTRUSION	134
XIX.		
	SOLID ROUNDS AND TUBING	137
	Conversion Costs to Produce Rounds by Hydrostatic	
	Extrusion and by Conventional Hot Extrusion	139
	Hydrostatic Extrusion of Rounds	139
	Conventional Hot Extrusion	141
	Comparison of Hydrostatic Extrusion and Hot Extrusion	
	Conversion Costs	141
	Conversion Costs to Produce Ti-6Al-4V Titanium Alloy Tubing	
	by Hydrostatic Extrusion	142
XX.	REFERENCES	147
1		